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Abstract—Many materials which are used in engineering applications, such as fiber reinforced
plastic composites, metal matrix composites and also more traditional materials such as concrete,
belong to a large class of multiphase, inhomogeneous solids. When these components are used for
structural applications, the evaluation of structural safety and durability can only be carried out by
performing numerical analyses which use a representative constitutive law of the homogenized
medium, partially losing a detailed description of the microstructure. Naturally, the better consti-
tutive models are those retaining a larger number of relevant features present in the behavior at the
microstructural level, though this attention for detail cannot be pushed beyond a limit which is
assigned by the random variations in the microgeometry. It is the intent of this work to describe a
procedure in which simplified constitutive models for random composites can be defined from the
mechanical behavior of each component. The derivation of the overall properties does not rely on
a linear elastic analysis of the microstructure but, as it is done in a more refined way in finite element
studies, the parameters governing the interaction between the different phases are obtained from a
purely topological description of the material. In the second part of this work, attention is devoted
to the constitutive behavior of concrete, which is a binary composite with random distribution of
phases. Some of the features characterizing the softening response of this material are incorporated
in a new constitutive model for the matrix phase (mortar). Finally, some results are given for a
binary composite incorporating a softening and a linearly elastic phase for two simple loading
histories.

1. INTRODUCTION

The search for a representative constitutive law for a composite solid has been characterized
by several contributions; for the case where the different phases are randomly distributed,
a well known tool of analysis is the theory of mixtures (Green and Naghdi, 1965), which
will be addressed in more detail in the next section. Other theories of homogenization or
related work go from the early studies on elliptical inclusions (Eshelby, 1957) to Mori and
Tanaka (1973) and similar models (e.g. Benveniste, 1987) and are all characterized by an
initial assumption; the behavior of the multiphase material is captured by a constitutive
model containing parameters which are obtained from a linear analysis of the micro-
structure. This initial hypothesis somewhat impairs the effectiveness of all constitutive laws
which are subsequently derived. At the other end of the scale one finds the finite element
studies in which the microstructure can be fully represented with the greatest detail, but
from which it is difficult to extract general laws and, furthermore, with which it is difficult
to cope with the statistical variations of distribution, size and shape at the microstructural
level. In particular, if one takes a rather common material, for example concrete, the range
of grain dimensions for the dispersed phase (aggregate) can vary from tenths of a millimeter
to a few centimeters ; no finite element study can possibly capture the complete interaction
between the smaller and the larger material scales given the enormous amount of dis-
cretization which would be required. An aspect of the theory presented in this work, as it
will be more carefully explained in the next section, is the possibility of taking into account
the average interaction between the different material scales. This objective can be
accomplished by considering a mechanical model containing building elements, connected
in some way, which have very different representative volumes. One can therefore build a
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Fig. 1. A mechanical representation of the constitutive behavior predicted by the theory of mixtures
for a binary composite (left) ; a model with more degrees of freedom is shown on the right.

mechanical equivalent of the composite under scrutiny which spans across a few levels of
micromechanics.

2. CONSTITUTIVE MODELS FOR HETEROGENEOUS SOLIDS

2.1. The theory of mixtures

Among the simplified constitutive models which serve as computational tools for the
analysis of complex problems, the first one which comes to mind for simplicity and wide-
spread use is the theory of mixtures. Such a theory considers a representative continuum
where the stiffness of each phase contributes to the overall one in a measure directly
proportional to its volume fraction. If K, is the stiffnesst of each phase and y; the cor-
responding volume fraction, the stiffness of the composite material is given by

Koverall = Z Kiyia (1)

and each phase is considered to be subjected to the same strain as the overall composite. A
pictorial representation of the assumptions of the theory of mixtures is shown in Fig. 1(a)
for a two-phase material ; the parallel assembly of the two phases reflects the additivity of
the material stiffnesses and the equivalence between the phase strains.

Although this is a very simplified way of representing the constitutive behavior of a
composite solid, there is one aspect of this theory which needs to be highlighted because it
will also appear in more complex material models. If one considers two phases characterized
by having different stiffnesses, one can show that a uniaxial state of stress will produce a
compressive stress in one phase and a tensile stress in the other along directions which are
normal to the axis of loading. For example, if the value of Poisson’s ratio is not the same
in each phase, the two isolated phases would respond to uniaxial loading with different
lateral contractions or elongations. Since every component of the strain tensor has to be

+ Throughout this study, boldface variables denote matrices or tensors. In addition, when the equations are
written in component form, the indicial notation and conventional sum over repeated indices are used.
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the same in each phase of the composite material, some additional internal stresses will
arise so that the state of deformation will be equal. From the point of view of the composite,
these internal phase stresses will not appear since their net sum, weighted by the volume
fractions of each phase, has to vanish. Nonetheless, they will have to be considered whenever
the state of stress of each individual component is evaluated, for example, when yield
conditions are taken into account.

2.2. Ladder models for binary composites

One can consider the theory of mixtures as a starting point for the construction of
more refined material representations. In particular, a visual examination of any cross
section of a random composite reveals that, for a given axis of loading, some fractions of
the different phases are indeed reacting in parallel to the external action while others are
assembled in a manner that more closely resembles a series of deformable entities. As a first
modification of the first order mixture theory, one could consider a series assembly of two
representative elements, as shown in Fig. 1(b); one of them is made up of the two phases
working in parallel, the other one of the same phases reacting in series. The state of stress
will be different in each single component and it will be derived assuming that each part of
material contributes to the overall response in measure directly proportional to its volume
fraction. For this purpose it is useful to introduce the concept of “finite” stiffness D and
“finite” compliance D™}, defined by considering the series and parallel assembly of two
finite volumes of material. In the parallel assembly of elastic elements, as shown in Fig.
1(a), the contribution of each phase to the overall stiffness is directly proportional to the
corresponding volume as in the first order theory of mixtures. The overall finite stiffness is
then given by

Doverall = VlKl + VZKZ (2)
where K, K, are the constitutive matrices of the phases and ¥, and ¥V, are the corresponding

volumes. In terms of the volume fractions o; = V,/ V., V¢ being the total or some reference
volume, one writes the finite stiffness as

Dﬁiéﬂ'ﬁ‘ = V(2 Ky +,K3). 3)

The above law, valid also in the case where the sum of the volume fractions is not unity,
can then be used to obtain the constitutive stiffness K as the volume average

1

Kparallel — Dparallel —
overall overall
Vi+V, oy 0

(o0, K, +2,K,). 4

Accordingly, the finite compliance D! of a series assembly of two phases of volume
fractions 8, and f, can be derived as

o_vérall = Vref(ﬁlK;l +ﬁ2K;1) (5)

or, after derivation of the constitutive compliance and inversion,

e = (B +B2) (BIKT +5,K ) (6)

It is straightforward to notice that, for any value of the volume fractions, the above
formulaes render an unchanged stiffness if both phases are set to correspond to the same
material. If one now considers a binary composite represented by an assembly of four
elastic elements as shown in Fig. 1(b) (8, and B, being the volume fractions of the two
phases working in series and «, and a, the corresponding values for the parallel assembly),
one can compute the overall constitutive stiffness as

SAS 32-6/7-H
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Koveran = (81 + B2+ 0, +3) [ﬂl(Kl)*l +ﬁ2([(2)—1 +( +°‘2)2(0¢1K1 +°‘2K2)_]]_l- @)

Again, if the two phases have the same elastic response, the above relation renders the
unchanged material stiffness. The overall strain will be given by

&= Koveralla' (8)

If one distinguishes the entities pertaining to the four different elements with the subscripts
B, B, x) and a,, one can write the overall strain as

1

&= —
Bi+Br+a +a,

[ﬁlsﬂl + 52852 + (al +a2)8al,a2]

from which relation the single strains are obtained. The strains of the elements working in
series are

~1
sﬁl =K| o

&g, = Kz_ld
whereas the (common) strains of the parallel assembly become
8.y = (0 + ) (@, K, +2:Ky) o, )

The phase stresses will be given by

dﬂl =0
Op, = o
o, = K&, ., =K, (¢, +0a;) (o, K, +0,K;) o

Oy, = KZSa,.az = K, (o, + ) (o, K, +052K2)A10'. (10)

Note again that, if the stiffnesses coincide, the above formulae render a constant value of
strain and stress for each element.

The above simple model can be enriched by adding more elements working in series
and in parallel, with a certain degree of arbitrariness on the geometry of the assembly. Now
the crucial question arises; which one is the correct, or more accurate, representative
geometry? The precise answer to that question will not be given here, since the present work
is still preliminary and more analysis needs to be done. Nonetheless, one can see that the
answer depends on the characteristics of the material and on the ability one has to capture
them with a mechanical analogy. For example, a binary composite with the same constituent
phases may be related to slightly different ladder models if the size distribution of the
dispersed phase varies ; also, the shape of the dispersed particles may be of importance. All
these observations lead one to conclude that the potentialities of the model can be used to
their full extent only when the different factors characterizing its definition are taken into
account.

Finally, a question arises about the importance of going through all the trouble of
defining the model geometry if a simple constitutive matrix, the overall stiffness, is obtained
at the end. The answer lies in the distinctive feature of the ladder model, namely that each
single component is not required to follow a linearly elastic behavior, hence to possess a
constant stiffness. Each building element may be subject to plastic flow or to any other sort
of nonlinearity in the mechanical response, which will influence the overall behavior of the
composite. The current constitutive matrix of a single element may be evaluated by following
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its stress and strain histories, which depend on the overall loading history, on the geometry
of the model and on the mechanical behavior of the rest of the assembly. Obviously,
elements of the ladder model formally representing the same phase may be characterized
by different responses if their respective mechanical histories do not coincide. Considering
again the model of Fig. 1(b), the distinction between phase 1 and phase 2 needs to be
complemented by a further differentiation based on the different loading histories of the
single elements. The stiffness matrix of eqn (7) should then be rewritten stressing that the
constitutive behavior of the different components may differ even if they belong to the same
phase, hence

Koveran = (B1 + B2+, +a5) {ﬂl(Kﬁl)vl +8,(Kg,) '+ (o +ay)?- (o, K,, +°‘2Ka2)7l]_l
(11)

where the added subscripts denote further differentiation. A model similar to the one of
Fig. 1(b) will be employed in the next section to describe a material possessing some of the
constitutive features of concrete. In that case, in order to take into account the load-
ing/unloading conditions for each component, the elastic stiffness will be used to compute
the initial strains and the actual loading history will be determined by a modified Newton—
Raphson iteration.

It is now time to comment about the reason for the designation of the new model as
the “ladder” model. The main reason is historical, since some relaxation models which
have been proposed for the mechanical interpretation of viscoelastic behavior were made
of elastic and viscous elements assembled in a fashion similar to the geometries that have
been discussed. In addition, consider the possibility of further differentiation and splitting
of each constitutive element into an assembly of smaller ones; since the representative
volume fractions decrease, one can represent or capture all the length scales of the mech-
anical response. Elements belonging to the same phase may be conceived as having some-
what different constitutive behavior if their representative length scales are very different.
Hence, the mechanical analogy could possibly allow the representation of different consti-
tutive behaviors at diverse micromechanics levels or, in other words, to go down the ladder
of the microscale characteristic lengths; this idea constitutes the other reason behind the
designation “ladder method.”

3. AN APPLICATION TO A CONCRETE-LIKE MATERIAL

As already mentioned, concrete is a binary composite characterized by a random
distribution of the two phases and by a rather wide range of microstructure dimensions. In
this section constitutive laws will be presented which may be used to study the behavior of
concrete. In the next section the ladder method will be applied to a binary composite in
which the two phases possess some of the constitutive features of the constituent phases of
this material, mortar and aggregate. Needless to say, there are many other characteristics
which this simple numerical experiment neglects, such as the non-associated plastic flow
and the hysteretic behavior under cyclic loading ; these aspects will be considered in future
studies.

Since most of the inelastic deformation of concrete is located in the matrix phase
(mortar) or at the interface between mortar and aggregate, a particular effort will now be
devoted to the definition of their constitutive laws, while the dispersed phase (aggregate)
will not receive a great deal of attention. In particular, in the numerical studies presented
in the next section, the constitutive behavior of the dispersed phase will be considered
linearly elastic and isotropic. A detailed explanation of a distributed damage model, which
may be used to describe the softening behavior of mortar, will now be introduced, followed
by the definition of a compact failure criterion for the interface.
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3.1. Constitutive model for the matrix phase

The constitutive model for mortar intends to take into account the effects on the
material response originated by the onset and development of microcracks. This task is the
proper objective of the field of damage mechanics, which tries to define phenomenological
quantities (damage variables) governing the nonlinear behavior of the material under
arbitrary loading histories. If one looks at the current literature, one sees that there are
several, sometimes conflicting, definitions of the damage variable. A large part of the current
studies assumes that the inelastic behavior due to microcracking can be expressed by a
single, scalar damage parameter [Kachanov (1958) ; Lemaitre and Chaboche (1978, 1985) ;
Lemaitre (1985, 1987); for a more thorough list, see the review paper by Krajcinovic
(1989)]. Unavoidably, the definition of damage as a scalar conflicts with the real, anisotropic
material behavior occurring when the manifestation of damage is a distribution of oriented
cracks and not an ensemble of spherical voids. Some authors [for example, Ortiz (1985);
Simo and Wu (1987a)] try to accommodate for the anisotropy in the material response by
expressing the change in compliance as a function of damage and of the current stresses. If
one considers a few selected loading histories, one can observe that the predictions of these
models are physically reasonable only for the case of proportional loading.T A step above
these first order approximations one finds the studies of damage conceived as a second rank
tensor (Kachanov, 1980; Murakami, 1988 ; Dragon and Mroz, 1979), which are mainly
characterized by the effort of describing damage through an integral over the distribution
of size and of orientation of the microcracks. Finally, one finds the fourth and eighth order
tensors as possible candidates for the description of damage (Horii and Nemat-Nasser,
1983 ; Hashin, 1986 ; Chaboche, 1978, 1979). All of these efforts are characterized by the
non-trivial problem of relating a physical, possibly measurable quantity such as the exten-
sion and orientation of microcracks to the change in material response ; the connection is
not easy to establish if one enters the nonlinear regime where cracks start to interact and
coalesce.

In the present work, as suggested by Ortiz (1985), the proposed damage variable will
not be defined by a more or less directly measurable physical quantity, for example the area
of the microcracks or the volume of the pores in the material, but instead will be expressed
by the change in the elastic properties of the solid. This approach has the advantage of
bypassing the development of a law relating the physical manifestations of damage and the
change in constitutive behavior, which law would need to take into account factors such as
the interaction between microcracks, percolation of the defects and other nonlinearities
which make a clean theoretical derivation almost impossible. Instead, the damage evolution
law is obtained indirectly but unequivocally from experimental data giving the behavior of
the damaged material.

Following these considerations, the proposed damage model assumes that damage can
be described by a symmetric tensor g so that the compliance of the material can be written,
in component form, as

Cirr = Cou+ACHTE = Cly~+ patty (12)

where Cy, represents the compliance of the undamaged solid and AC; = pahy represent
the corresponding increase due to microcracking. From purely physical considerations, it
is obvious that the damage tensor u cannot have negative principal values. Also, Eqn (12)
is only valid for positive applied stresses ; if some principal stress is negative (compressive),
then the added compliance due to microcracking should not appear in the corresponding
direction, hence the equation will require some modifications which will be detailed later
in this section.

As already mentioned, the above eqn (12) is actually a definition of the damage
variable, which becomes a second order tensor. It is worth noticing that eqn (12) represents
a rather abrupt change from current damage models which tend to express damage as a

+'_[“he reason for the incongruous predicted behavior comes from the choice of a (scalar) critical stress
controlling the evolution of damage, independently from the preferred orientation of the microcracks.
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function of a dyadic product of microcrack orientation, integrated over the distribution of
microcracks. The above increase in compliance does not follow from the definition of a
dyadic product between some vectors or tensors. Comparing the current one to previous
phenomenological models, one can see that the order of indices differs from the usual
notation for the direction of damage (Ortiz, 1985; Simo and Wu, 1987a) ; the current law
in fact removes some of the inconsistencies which are encountered when non-proportional
loading histories are considered.t With the current model, referring to a principal frame
for the symmetric tensor u, one can see instead that all the additional terms of the form
AC,; (no sum on i and /, i different from /), responsible for those inconsistencies, vanish
because they are given by the product p;u;, also vanishing in that reference frame.

One can also show that the additional compliance due to damage is characterized by
minor and major symmetries. The major symmetry is a direct consequence of the symmetry
of the damage tensor g, whereas the minor ones are due to the fact that at least two of the
indices ,j, k,! (k and i in the following example) need to coincide, since they range from
one to three; hence any component AC,;, has to be of the form

ACyx = pypq of  ACyy = pupy  (nosum, i = k). (13)

It is a matter of evidence to see that the remaining two indices j and / are perfectly
interchangeable.

Equation (12) is potentially applicable to any kind of material undergoing mechanical
damage, but attention shall now be restricted to damage growth rate laws which seem to
be appropriate for describing the inelastic behavior of the matrix phase of concrete, mortar.
Following Ortiz (1985), a critical stress variable governing the onset and growth of damage
needs to be defined; its definition will contain a tensor valued function of the damage
components and also of the material elastic parameters. As detailed in a later section where
the yield condition will be addressed, the critical stress will define an upper (tensile) bound
to the stress states which the material can sustain compatibly with the current amount of
damage.

In the uniaxial case, Ortiz (1985) used Smith and Young’s (1955) law to represent the
stress—strain relation. This law reads

o =E05exp<— E) (14)

13

where ¢ and o represent the axial strain and stress, respectively, and e, is the deformation
at peak load. For a definition of the three-dimensional critical stress law one needs to
extend the uniaxial relation to multiaxial loading conditions. Such an extension has to
retain the physical features of Smith and Young’s law, namely that softening is maximum
perpendicularly to the plane with a larger projected area of the microcracks but also has to
accommodate the simultaneous presence of damage along different directions. In such a
respect, the law which will be proposed can be labelled linear, in the sense that the deriving
yield parameter will be expressed in terms of the linear superposition of all past damage
growth. The proposed three-dimensional linear extension of Smith and Young’s law reads

1 -1 /
;= (E 0.0 ) EXP (- M)EH (15)

irYjq
el

where E, is the Young’s modulus of the undamaged material. The exponential tensor EXP
is defined as the tensor which, in a principal reference frame for any tensor A, has principal
values corresponding to the exponential of the principal values of A. Furthermore, the

quantity ./, defined only for positive values of the principal strains which correspond

T For example, considering Ortiz’s theory, a material which is loaded along two perpendicular axes and then
unloaded, upon further loading on one axis only may have a lateral expansion due to damage which exceeds the
elongatjon along the loading direction.
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to tensile loading conditions, guarantees the symmetry of the new law with respect to the
last two indices of the constitutive stiffness. It is straightforward to verify that the above
relationship reduces to Smith and Young’s law in the presence of uniaxial straining aligned
with the reference axes.

Under tensile loading conditions, the critical stress can be obtained both from the
extended Smith and Young’s law as well as from the increase in compliance,

I —1
tij = (E‘ 5ik5j1 +ﬂik,ujl> Eki (16)
0
or
1 - -1 8pk£ql
;= Eé,-,,c)jq EXP . €kt (17
0 t

. . . 1 -t
where, using some licence of notation, <E—o 0uby+ Hakt j,> is taken to represent the
(i,j, k, )th component of the effective stiffness for uniaxial loading. From these equations,
one can observe that the following relation must hold :

N Epkbal 5"“"’). (18)

1 S -1
(Evoaiké.l'/+#ikﬂjl> = <EO 5,1,(3]-,]) EXP <* el

From the above equation, one then obtains

v Emk €ni 1 1 !
EXP e—; = fo OOy “E_o 0wl + takdy | (19)
Setting £ = » and summing gives
Epnt 1. . /1 -t
EXP| — _1 = E_o 5mi0nj E—Oéin5j1+“inujl (20)
or, upon inversion of the exponential,
1 A
Emt = & LOG E_Oaniéﬁ _E-—O 5im5jn +)uim1u'jn . (21)

From that expression and from the expression of the critical stress eqn (16), one obtains

ty = Eo(840,+ Egptatty) " LOG (81 + Eo inttui)€;- (22)

It is a matter of some algebra, which can be simplified by writing eqn (22) in a principal
reference frame for g, to verify that the principal values of the critical stress tensor are
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Fig. 2. Critical stress as a function of damage for a uniaxially damaged material.

always non-negative. In the case of damage growing along one direction only, say p,;, the
behavior of the corresponding critical stress is shown in Fig. 2. For sake of notation, it is
convenient to express the above relation in tensorial form; if one denotes by . the
dimensionless tensor of components .#;; = 040;+ Eopapiy, and by “:” the double inner
product of two tensors ((A : B),.y = 4;;,,B,.), then the expression for the critical stress can
be written as

t= Eye, " :LOG (#:1), (23)

I being the identity tensor of rank two.

The above equation is similar to that derived by Ortiz (1985) in the framework of his
scalar damage model for concrete. The differences between the current and Ortiz’s theory
are due to the different definition of damage variable, represented by a tensor in the present
work. As in the properly uni-dimensional case (Ortiz, 1985), one can verify that the critical
stress of the three-dimensional model vanishes if the material is undamaged (u = 0), hence
the damaging process starts as soon as the material is loaded.

Now the condition of some negative applied stress will be considered. In order to do
80, it is convenient to introduce the concept of positive projection of a tensor. As addressed
more extensively in the Appendix, we define the projection of the damage tensor u along
the positive directions of the applied stress ¢ as the tensor of components (Simo and Wu,
1987a)

/»‘J(O) :|: Z n® n;cp)iH: Z n.f‘p] ”y’)il#kz (24)

p:ap>0 p:ap>0

where n/” represents the ith component of the eigenvector corresponding to the positive
principal stress ¢,, the summations being extended only to the positive principal directions
of ¢. Then the law giving the added compliance due to microcracking is still valid for a
general stress state if one replaces the damage tensor by its projections along the positive
directions of the applied stress.
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3.1.1. Yield condition. For a material which undergoes damage isotropically, the dam-
age rate is usually obtained considering the variation in the yield function and requiring it
to vanish under loading conditions. This procedure is made possible by the isotropic
dependence of the change in yield function on the stress increment. In the case of anisotropic
damage, this requirement becomes difficult to impose because the yield function does not
depend only on the stress state but also on its orientation with respect to the material
itself and its past history. The yield criterion is therefore associated with an entity which
distinguishes the directions along which a stress increase is incompatible with a constant
critical stress or damage from those where the threshold is still far away from the current
loads. A suitable approach could require, for example, that the difference between the
applied stress and the critical stress does not have positive eigenvalues (the principal values
of the critical stress, as shown earlier, cannot be negative). Graphically this requirement
can be visualized using Cauchy’s stress quadric; for a generic symmetric tensor A with
positive eigenvalues, the Cauchy surface in three-dimensional space can be written in the
form

Aixx;=ky >0 (25)

where k, is an arbitrary positive constant. If one sets A = ¢ (applied stress), then the normal
stress o, acting on any material surface with normal v is related to the corresponding radius
of the Cauchy surface in the form

Oy = (26)

where x,x; represents the squared distance between the origin and the point on the Cauchy
surface aligned with v, i.e.

Xi

@7

v, = .
XXk

The yield condition can then be obtained by imposing that the applied stress quadric always
remain external to the critical stress quadric for any direction v considered. Evidently, if
one or more eigenvalues of the applied stress quadric are negative, the above eqn (25) may
have no real solution for some domain of directions v, so the yield condition is always
satisfied in that domain.

How does the anisotropic yield condition affect the stress increments? If a stress change
modifies the stress state so that the applied stress quadric always remains outside the critical
one, no increment in damage is necessary. Conversely, if the two surfaces are already in
contact at some point, then the yield condition along that particular direction has to be
taken into account. A method will now be shown which is suitable for incorporating the
directionality of the yield condition and which relies on the use of the projection operator,
as explained in the Appendix. This operator will be based on the critical stress difference
z = o —t, namely the difference between the applied and the critical stress.

Starting from the critical stress difference z, one can construct a step function tensor
H(z) = H*® which, in the principal reference frame for z, assumes a diagonal form with
zero elements if the corresponding elements of z are negative, and with unitary values if the
corresponding elements of z are positive or vanish. Through the step function tensor, one
can also define the four-dimensional projection operator P*® given, in component form,
as
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P = HL® Hi®. (28)

The rate form of the yield condition can then be written by weighting the elastic change of
the applied stress through the projection operator and requiring that the tensort

, 0o, . do; . ,
Yij = Pi-;p(q) 885 &t Wk/[ Mt — Ly (29)

has no positive eigenvalues, subject to the condition that all eigenvalues of ji be non-
negative. The effect of the projection operator in the above equation is to remove from
consideration all the elastic stress increments which correspond to directions where the
corresponding normal tractions are still far away from the bounding surface defined by the
critical stress tensor. As mentioned in the Appendix, the definition of the projection operator
based on the Heaviside step function leads to numerical difficulties and is probably not too
realistic. It therefore seems justifiable to replace the kernel functions in the projection
operator with some function going smoothly from zero to one as its argument becomes
positive. An ideal candidate is the projection operator based on the error function (see the
Appendix),

5® = ERFY ERFY (30)
where
3
ERFC(z) = Y, erfc(4,, o, )nin (31

a=1

g, being the variance of the distribution and 4,, a = 1,2, 3 the set of real eigenvalues of the
critical stress difference z = ¢ —t.

For the very special case of loading in all directions, one could solve directly for the
damage increment in the form

oy da; 17! 00, .
oy = {% - [%}} Py, I:E &y (32)

but generally this condition cannot be verified a priori. In fact, the solution to eqn (29) may
not even be unique unless one imposes some additional conditions, as will be done in the
next section for a case where the principal axes of damage do not rotate. The additional
condition in that case will be chosen as the maximization of the total damage increment,
sum of three damage increments along three known perpendicular directions; the yield
condition can then be implemented using the tools of linear programming.

The partial derivatives appearing in eqn (32) can be obtained by noting that, given
any non-singular tensor A, the time derivative of its inverse is given by

AT L .
5 =A = —A'AA! (33)

hence

+ The approximation of small deformations and small material rotations is adopted throughout this study.
The time derivatives of all tensorial quantities are therefore computed by simple time differentiation of their
components, without considering corotational derivatives as, for example, Jaumann’s derivative.
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0a;; _
aj = - [Ciqu + #ip#jq] -t (ﬂpméqkénl + ,u'qnépkéml) [Cmnr: + ,umr#ns] ! Eps (34)
kil

or, after some rearranging which takes advantage of the minor symmetries of the total
compliance tensor,

do;; _
WJ = - 2[Cijpk + #ipujk] ! [lers + #mr”ls] ! Hpméys- (3 5)
ki

If one approximatest the derivative of the logarithmic tensor of a symmetric matrix A as

dLOG (A . . .
4(1!( )~symm(AA“) =12(AA“+A”‘A), (36)
one can obtain the derivative of the critical stress with respect to the damage increment. In
compact form this derivative reads

Vit = Ege, [— M~ Vu(M): M~ + 1l (Vp( M) M+ M Vu(M)):]]  (37)

where V uA denotes the derivative of the tensor A with respect to the damage variable g
whereas in component form,

0A;
VpA) = —2. 38
(V pA) o = 5. (38)

3.2. An additional failure mode of the ladder representation

The representation of the real composite material by the conventions of the ladder
model allows some considerations about the non-uniform states of stress arising throughout
the solid and their consequences. These further observations induce possible explanations
for the failure modes of these materials under compression, modes which are characterized
by the onset of microcracks parallel to the loading axis preceding the total disgregation of
the solid. Poisson effects (i.e. different lateral expansion or contraction for two phases under
uniaxial loading which causes a tensile and a compressive lateral stress) have been usually
proposed to be the cause of these typical failure surfaces. While these effects are still retained
in the local behavior of the elements composing the ladder model, an additional failure
mechanism will now be addressed.

Consider the example of Fig. 3 where an idealized situation of a geometrically regular
material microstructure is shown next to its ladder model representation ; such an idealized
material is supposed to be subjected to some overall compressive stress. In the framework
of the ladder model, one can compute and analyse only uniform stress states located at
idealized junctions between the different representative elements. These idealized stress
states would correspond to an averaging of the non-uniform spatial distributions of the
real physical world.

When two elements working in parallel are subjected to two quite different states of
stress, the material which surrounds them (or, in the ladder abstraction, works in series
with them) has to redistribute a more or less uniform stress state received at one end into
a rather uneven condition at the interface with the two elements in parallel. One can see
that this redistribution corresponds to a stress increase in the interior of the representative
volume, a stress increase which cannot be captured directly by the ladder model since this
model only deals with the stresses at the element interfaces/junctions. This additional

+ The problem of differentiating a tensor valued function of a tensor was approached by Hoger (1986), who
actually gave a closed form solution for the derivative of the logarithm of a tensor. Nonetheless, considering the
complexity of Hoger’s solution, an approximate but simpler relationship was adopted for this derivative with an
error of the order of a few percent if the damage increments are kept sufficiently small ; the approximate relation
becomes exact if the principal axes of damage do not rotate.
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Fig. 3. An idealized geometry of a composite and the corresponding ladder model representation.

loading has to be considered when failure modes are addressed. In the idealized geometry
being considered, the stress difference between the two elements working in parallel is likely
to induce a stress concentration, hence progressive degradation and failure, at the boundary
where the three elements intersect.

A question now arises on how to take into account this mechanism of degradation in
the overall response of the ladder model. Some considerations can help in defining those
criteria.

e As opposed to the damage model previously defined for the softening phase, where
the material did not present any directionality with respect to the loading axis, now
there is a boundary between ladder model elements working in parallel, and the
response has to be averaged over all possible orientations of this boundary.

e For the above reason, an anisotropic damage condition with regard to the failure of
these elements would be inconsistent; “being subjected to a preceding process of
averaging. A scalar model of degradation must be employed.

e In the spirit of the ladder model, one may assume that the whole assembly (one
element in series with two elements in parallel) is representative of a statistical
population of volumes of material. Over this statistical population, one may define
an expected value of some parameter, based on the stress difference in the parallel
assembly, that governs the failure of these representative volume elements.

e If one assumes that the statistical distribution of the failure parameter has a certain
shape (e.g. Gaussian), then the fraction of elements which have failed can be easily
computed from the current value of the critical variable. Again in the spirit of the
ladder model, the response of the assembly will be proportional to the remaining
fraction of load carrying members.

The critical scalar parameter has to be defined through some function of the invariants
of the stress difference, i.e. the difference between the stress states of two elements working
in parallel. Since the sign of the stress difference is arbitrary, a good candidate for the
critical function cannot distinguish between tensile and compressive stresses. For the sake
of simplicity, in this work the square root of the second invariant of the parallel stress
difference 7,(Aag) will be considered as the critical variable. Another possible choice, not
considered here, would be the second invariant of the deviatoric stress difference. It will
also be assumed that the distribution of microgeometries and physical bonds is such that
the statistical distribution of failed elements is represented by a Gaussian curve centered at
the reference value of the critical variable ./I§" = s,, and having a certain variance s,. The
actual stress carried by an assembly of elements 6. 1S then obtained by multiplying the
initially computed stress, in the absence of this failure mechanism ¢, by the fraction of
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Y1 Y2

Fig. 4. A ladder model representation of the constitutive behavior of a concrete-like material.

elements which are still carrying load; this fraction can be written in terms of the comp-
lementary error function of the stress overshoot,

Ag) —
Oeoeive = @ Cerf (Ag, 50, 5,) = a[l —erf (——\’IZ(")S")] (39)

So

In the numerical results which will be now presented, the above relation (39) will be denoted
as the “interface” correction to the stress state. This definition is motivated by the presence
of an abstract connection (model interface) between two parallel elements in the ladder
model and also by the fact that the stress redistribution between these two elements can
locally affect the physical boundary between them (real interface).

4. THE NUMERICAL STUDY OF A CONCRETE-LIKE MATERIAL

4.1. The ladder model

The ladder model used to represent the constitutive behavior of the binary composite
is shown in Fig. 4, where the addition of two elements working in parallel, having volume
fractions y, and y,, brings the effective stiffness matrix of eqn (11) to the expression

1

Kovera = K, + + +B8, 4o +a 2
! V1+}’z+ﬁ1+ﬁ2+a1+a2{y' 0t 72K+ (Bit Brt o +ar)

1B (Kp) T B (Kp,) T+ (o + o) (0K, + oK) T T (40)

where the initial values taken by the constitutive matrices are those defining the elastic
behavior of phase 1 or 2, depending upon their second indices. Obviously the above stiffness
is only useful for the initial definition of the strains affecting each component of the ladder
model, which strains are subsequently adjusted iteratively when the effective elastic and
inelastic stresses are computed. All the volume fractions «,, a,, B, B, 71, 72 are set equal to
1/6; the subscript 1 indicates that the particular element belongs to the softening matrix
phase and a subscript 2 denotes an element following the constitutive behavior of aggregates.
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For clarity reasons in the plots being presented, the different elements will be labelled with
their corresponding volume fraction.

4.2. Results and discussion

The results of the mixture theory and of the ladder model will now be presented for a
binary composite subjected to a prescribed strain history along a given axis. All con-
siderations regarding the influence of the proposed constitutive law on mechanical insta-
bilities and related issues [Hill (1958), (1959), (1961) ; also recently Losi (1994)] will not be
addressed here and will be the subject of future work. One of the two phases is supposed
to obey the anisotropic damage laws [eqns (12), (22) and (29)], while the other is taken to
have a linearly elastic behavior. The initial Poisson’s ratio for the softening phase is equal
to 0.2, while the value for the linearly elastic phase equals 0.25. The following elastic
parameters summarize the characterization of the material.

Phase 1 (mortar) :

EO,l = 5000 ksi G()‘] = 2083 ksi e, = 0.4 x 10_3 g, = 01 E()_]et.

Phase 2 (aggregate) :
E,, =7500ksi G, ,=3000ksi; linearly elastic.

Maximum stress difference for elements working in parallel :
expected value of maximum stress difference: s, = 4E,, e,

corresponding variance: s, = 4FE, e,.

Only cases of proportional straining will be presented. Under these conditions, with regard
to the phase which undergoes damage induced softening, the expressions giving the critical
stress and the yield condition can be greatly simplified since the principal axes of damage
do not rotate and remain aligned with the loading axes. In the reference frame aligned with
these axes, the critical stress can be written as

Mog (14 E u?
og(1+ Eypu1y) 0 0 ]
1+E0,U%1
1 1+ Eo
t = Ee, 0 _9g_(+_°2ﬂ2_22 0 . (41)
1+ Eous,
0 0 log(1+Eozu§3)
L 1+ Equ3;

Analogously, the three strain components &,,, &, &, can be concisely written in terms of
the corresponding stresses in the form

2
&1 Cyinn +ui Ciiz Ciis3 011
_ 2
€320 = Coan Ciaaz+ 132 Cia33 02 42)
2
€33 Cisn Ciian Cis33+ 1433 [{ 033

which allows an easy computation of the partial derivatives da;;/0y,,. Under the requirement
of positive damage growth (jz; > 0, no sum on i), the system of equations which defines the
yield condition reduces to a linear programming problem. This problem cannot be solved
consistently unless one imposes the solution to have some additional features. In the
calculations presented here, the additional condition of maximization required that, for a
given strain rate, the total damage rate ji,, + jto, + jts; be maximum. The replacement of this
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Fig. 5. Predictions of first order mixture theory; normalized stress/strain curve for the softening
phase for a uniaxial tensile test, along the direction of loading.

extra condition with similar ones, such as the maximization of the inelastic strain increment,
can be carried out with minimal effort. Following the above assumption, the three equations
representing the yield conditions can be cast in the inequality form

ot Jo 3
G =23 < Y YplCutgat Hipth] ™ by 20 k= 1,23 (43)
i it pg=1

where no sum on repeated indices is intended unless indicated. The above inequalities can
be solved using linear programming techniques; the ones reported in Press et al. (1988)
were used in this study.

Initially, the predictions of the first order mixture theory {only two phases with equal
volume fractions) are presented. In the case of a uniaxial tensile test, Fig. 5 shows the stress
history of the softening phase along the direction of loading. The only difference with
respect to the critical stress curve of the isolated phase is a straighter portion of the curve
in the descending part, possibly due to the smoothing effect of the projection operator
appearing in the yield condition.

The behavior of the averaged mixture stress without the interface correction does not
have any remarkable features, since every deviation from linearity is largely hidden by the
elastic response of the second phase. However, if one applies the correction based on the
second invariant of the stress difference, one obtains the curve shown in Fig. 6.

The results for the compression test with the interface correction are shown in Fig. 7.
Along the axis of loading, both phases are in a compressive state whereas the lateral stress
history of the softening phase shows tensile loading, as shown in Fig. 8. It is worth
observing that, even within such a crude model, the absolute value of the maximum stress
in compression of the composite is about four times higher then the corresponding one in
tension, and all of this without recurring to ‘“cross-effect” coefficients as it is sometimes
done in the literature.

The results of the ladder model with six components shall now be considered. For the
tension test with no interface correction, the more interesting plots are those giving the
stress response of the two elastic components which are denoted in the model as having
volume fractions §, and a,. Due to the progressive softening of the matrix phase in series
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mixture theory with interface correction
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Fig. 6. Predictions of first order mixture theory with interface correction.
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Fig. 7. Predictions of first order mixture theory with interface correction for the compression test.

with them, these two components see their applied stress, hence their total strain, diminish
as the overall axial straining increases. These resuits are shown in Fig. 9.

The results of the compression test with no interface correction show no remarkable
behavior since the presence of an elastic component working in parallel to everything else
masks all the nonlinearities. The softening components are subjected laterally to tensile
stress (hence, damage growth) as shown in Fig. 10.

If now one turns attention to the results where the interface correction is present, one
can see that the ratio 1:4 of the strengths in tension and compression of the first order
mixture model now become approximately 1:9. The interface correction was applied twice
in the ladder model, first at the two components y, and y, in parallel, and then the resulting
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lateral stress in softening phase
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Fig. 8. Predictions of first order mixture theory. The plot shows the time history of the lateral stress
in the softening phase.

response of elastic phases in tension test

0.6 T — —r T T T

o/ (Eoet)
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Fig. 9. Ladder model predictions ; stress response of the elastic components participating in the
series assembly. The continuous curve represents the loading history of the elastic element denoted
in the model as «,, whereas the dashed curve corresponds to the element §,.

stress was compared with that of the series 8,, B,, &, +o,. The results are shown in Figs 11
and 12.

5. CLOSURE

The intent of this work has not been to present definitive statements on how to
represent the constitutive behavior of heterogeneous solids, but rather to sketch a new way
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lateral stress of soft. phases vs. overall axial strain
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Fig. 10. Ladder model predictions ; lateral stress of the softening components vs uniaxial compressive
strain. The dashed line corresponds to the element «,, the upper continuous line to the element 7,
and the lower one to f,.

ladder model with interface correction
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Fig. 11. Uniaxial response of the ladder model with interface correction for the tensile test.

of approaching the problem. Within these limitations, the presented results encourage
further investigation in order to incorporate the many diverse aspects of the mechanical
behavior of these materials. In addition, the proposed damage model incorporates three-
dimensional and anisotropic features which certainly accompany the mechanical degra-
dation of some of these composites, concrete remaining the primary example.

SAS 32-6/7-1
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ladder model with interface correction
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Fig. 12. Uniaxial response of the ladder model with interface correction for the compression test.
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APPENDIX: TENSOR VALUED FUNCTIONS OF SYMMETRIC TENSORS

The problem of defining and differentiating tensor valued functions of symmetric second order tensors has
been approached by Hoger (1986). Briefly, the definitions and some typical examples of this class of functions
will now be recalled. Given any symmetric second order tensor A, one can write its decomposition in terms of the
eigenvector components, namely

3
Ay = Z Aning (A1)
x=1

where the A,s are the three real eigenvalues and the n? represents the ith component of the corresponding
eigenvector. One can define any arbitrary tensor valued function of A as the tensor which, in a principal reference
frame for A, is also diagonal and has as diagonal elements scalar functions of the corresponding eigenvalues of
A. For example, the logarithm of a tensor is defined by

3
LOG (A) = ¥ log (A)mn?, 4, > 0. (A2)
a=1

Another useful tensor valued function is the step function tensor. If one considers the Heaviside step function 4,
defined as

I, ifx=0
hix) = {
0 otherwise,

then the step function tensor is defined by
3
HA)=H"" = Y "), (A3)
a=1

Using the step function tensor, one can build the projection operator P** based on the positive directions of the
tensor A. This operator, which is a four-dimensional tensor, is written in component form as

+TA) +{A) +{A)
Piik( - Hik Hl/ .

One can show that the projection operator, when applied to the base tensor A, removes all of its negative
eigenvalues ; one can easily verify this property by writing the tensor product in the common principal reference
frame of A and P*™. If one instead applies the operator P*'* to a tensor which does not share the same principal
reference frame, then the results are somewhat different. For the sake of simplicity, consider as reference frame
any principal frame of A ; given the tensor S of non-vanishing components S, the product P*™® : S yields

S, 0 07

P*:S=)0 0 0| ifonlyi,(A)=0
L0 0 O
ESlI SIZ 0

P*®:S =8, 8, 0| ifi(A),A(A)>=0
L O 0 0

P 4 :S =S ifi,(A) 4:(A), 4;(A) = 0.

The use of the projection operator based on the critical stress difference has been previously proposed (Section 2)
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as a tool for implementing the yield condition in solids undergoing anisotropic damage. As defined above, this
operator presents a discontinuity when the eigenvalues of the critical stress difference z = ¢ —t transition from
negative to positive or zero, with the corresponding onset of numerical complications. In order to avoid these
problems and also to have a better correspondence of the numerical model with the physical worldf one can use
different definitions of the projection operator based on base functions which are smoother than the Heaviside
step function. Any function which goes from zero to unity in going across the origin can be used to construct such
smooth operators. A good candidate is given by the operator based on the error function tensor ERFC (A),

3
ERFC(A) = Y erfc(4,, 0,)nin; (A4)

a=1

where

" e @I de, (A3)

s

erfc (4,,0,) =

t As the Romans used to say “natura non facit saltus” (nature does not make jumps).



